A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics

نویسندگان

  • He Li
  • Qiquan Quan
  • Zongquan Deng
  • Yuxiang Hua
  • Yinchao Wang
  • Deen Bai
  • Sheng-Yuan Chu
چکیده

A novel ultrasonic levitating bearing excited by three piezoelectric transducers is presented in this work. The transducers are circumferentially equispaced in a housing, with their center lines going through the rotation center of a spindle. This noncontact bearing has the ability to self-align and carry radical and axial loads simultaneously. A finite element model of the bearing is built in ANSYS, and modal analysis and harmonious response analysis are conducted to investigate its characteristics and driving parameters. Based on nonlinear acoustic theory and a thermodynamic theory of ideal gas, the radical and lateral load-carrying models are built to predict the bearing’s carrying capacity. In order to validate the bearing’s levitation force, a test system is established and levitating experiments are conducted. The experimental data match well with the theoretical results. The experiments reveal that the maximum radical and axial levitating loads of the proposed bearing are about 15 N and 6 N, respectively, when the piezoelectric transducers operate at a working frequency of 16.11 kHz and a voltage of 150 Vp-p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Bare Piezoelectric Ceramics in Monitoring Resin Transfer Moulding (RTM) Process

This paper investigates application of piezoelectric ceramics mounted on surface of mould to monitor flow front and curing phases of resin in Resin Transfer Moulding (RTM) process. The piezoelectric ceramic is used for both generating ultrasound and measuring energy of echoed ultrasonic wave at the interface of mould and resin. One of the advantages of this method is that the piezoelectric cera...

متن کامل

Analysis of 1-3 Piezocomposite and Homogeneous Piezoelectric Rings for Power Ultrasonic Transducers

Some power ultrasonic transducers, such as Tonpilz transducers, require high-power transmitting capability as well as broadband performance. Optimized vibrational modes can achieve these requirements. This work compares the resonant characteristics and the surface vibration modes between a homogeneous piezoelectric ring and a 1-3 piezocomposite ring, both used in power ultrasonic transducers. T...

متن کامل

High Temperature, High Power Piezoelectric Composite Transducers

Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the abi...

متن کامل

Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer

BACKGROUND Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS A cylindrical type traveling wave ultrasonic motor usin...

متن کامل

Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications

Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT) thin film was applied to a micro ul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016